skip to main content


Search for: All records

Creators/Authors contains: "Kaye, Stephen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    We present the current design of WFOS, a wide-field UV/optical (0.31-1.0 µm) imaging spectrograph planned for first-light on the TMT International Observatory 30 m telescope. WFOS is optimized for high sensitivity across the entire optical waveband for low-to-moderate resolution (R ∼ 1500-5000) long-slit and multi-slit spectroscopy of very faint targets over a contiguous field of view of 8′ .3×3 ′ .0 at the f/15 Nasmyth focus of TMT. A key design goal for WFOS is stability and repeatability in all observing modes, made possible by its gravity-invariant opto-mechanical structure, with a vertical rotation axis and all reconfigurable components moving only in planes defined by tiered optical benches parallel to the Nasmyth platform. WFOS’s optics include a linear ADC correcting a 9′ diameter field, including both the science FoV and 4 patrolling acquisition, guiding, and wavefront sensing camera systems; a novel 2-mirror reflective collimator allowing the science FoV to be centered on the telescope optical axis; a dichroic beamsplitter dividing the collimated beam into 2 wavelength-optimized spectrometer channels (blue: 0.31-0.56 µm; red: 0.54-1.04 µm); selectable transmissive dispersers (VPH and/or VBG) with remotely configurable grating tilt (angle of incidence) and camera articulation that enable optimization of diffraction efficiency and wavelength coverage in each channel; all-refractive, wavelength-optimized f/2 spectrograph cameras, and UV/blue and red-optimized detector systems. The predicted instrumental through put of WFOS for spectroscopy averages > 56% over the full 0.31-1 µm range, from the ADC to the detector. When combined with the 30 m TMT aperture, WFOS will realize a factor of ∼20 gain in sensitivity compared to the current state of the art on 8-10 m-class telescopes. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Abstract

    We presentnimbus: a hierarchical Bayesian framework to infer the intrinsic luminosity parameters of kilonovae (KNe) associated with gravitational-wave (GW) events, based purely on nondetections. This framework makes use of GW 3D distance information and electromagnetic upper limits from multiple surveys for multiple events and self-consistently accounts for the finite sky coverage and probability of astrophysical origin. The framework is agnostic to the brightness evolution assumed and can account for multiple electromagnetic passbands simultaneously. Our analyses highlight the importance of accounting for model selection effects, especially in the context of nondetections. We show our methodology using a simple, two-parameter linear brightness model, taking the follow-up of GW190425 with the Zwicky Transient Facility as a single-event test case for two different prior choices of model parameters: (i) uniform/uninformative priors and (ii) astrophysical priors based on surrogate models of Monte Carlo radiative-transfer simulations of KNe. We present results under the assumption that the KN is within the searched region to demonstrate functionality and the importance of prior choice. Our results show consistency withsimsurvey—an astronomical survey simulation tool used previously in the literature to constrain the population of KNe. While our results based on uniform priors strongly constrain the parameter space, those based on astrophysical priors are largely uninformative, highlighting the need for deeper constraints. Future studies with multiple events having electromagnetic follow-up from multiple surveys should make it possible to constrain the KN population further.

     
    more » « less
  5. null (Ed.)
  6. Evans, Christopher J. ; Bryant, Julia J. ; Motohara, Kentaro (Ed.)
    The Keck Planet Finder (KPF) is a fiber-fed, high-resolution, high-stability spectrometer in development at the UC Berkeley Space Sciences Laboratory for the W.M. Keck Observatory. KPF is designed to characterize exoplanets via Doppler spectroscopy with a goal of a single measurement precision of 0.3 m s-1 or better, however its resolution and stability will enable a wide variety of astrophysical pursuits. Here we provide post-preliminary design review design updates for several subsystems, including: the main spectrometer, the fabrication of the Zerodur optical bench; the data reduction pipeline; fiber agitator; fiber cable design; fiber scrambler; VPH testing results and the exposure meter. 
    more » « less
  7. Abstract

    The Zwicky Transient Facility (ZTF), a public–private enterprise, is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg2field of view and an 8 second readout time. It is well positioned in the development of time-domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights ingandrfilters and the visible Galactic plane every night ingandr. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities that provided funding (“partnership”) are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter thanr ∼ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF, including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei, and tidal disruption events, stellar variability, and solar system objects.

     
    more » « less